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EXPONENTIAL TORSION GROWTH FOR RANDOM

3-MANIFOLDS

HYUNGRYUL BAIK, DAVID BAUER, ILYA GEKHTMAN, URSULA
HAMENSTÄDT, SEBASTIAN HENSEL, THORBEN KASTENHOLZ, BRAM PETRI,

DANIEL VALENZUELA

Abstract. We show that a random 3–manifold with positive first Betti
number admits a tower of cyclic covers with exponential torsion growth.

1. Introduction

Given a manifold M and a tower of coverings of M , i.e. a sequence

· · · →Mn →Mn−1 → · · · →M1 →M

of finite covers, one can ask about the growth of topological invariants for the
manifolds in the sequence. In the case that M is a hyperbolic 3-manifold of
finite volume, the study of such questions led to interesting conjectures which
relate the growth of invariants of the sequence to invariants of hyperbolic
3-space.

More concretely, in the case of a tower of congruence covers of a closed
arithmetic hyperbolic 3-manifold, conjecturally the growth rate of the tor-
sion H1(Mi,Z)tor in the first homology group coincides with the ℓ2-torsion
of H3, which equals 1

6π (Conjecture 1.4 in [BV13] proposes a slightly weaker
statement).

Much earlier, torsion homology growth was studied for towers of abelian
covers of knot complements. First results on the relation of this growth rate
to the (logarithmic) Mahler measure of the Alexander polynomial of the
knot or link can be found in [Ri90] and [GS91]. Equality of this growth rate
and the Mahler measure of the Alexander polynomial are due to Silver and
Williams [SW02a], and extensions of these results and an interpretation in
the context of ℓ2-invariants can be found in [SW02b] as well as in the more
recent papers [BV13, Ra12, Le14].

As it became apparent in recent years, the existence of towers of cov-
ers with exponential torsion homology growth should be abundant for 3-
manifolds. The recent work [BGS16] explains that however, such towers
do not exist for manifolds of higher dimension. The goal of this paper is
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2 EXPONENTIAL TORSION GROWTH FOR RANDOM 3-MANIFOLDS

to study the existence of towers of cyclic covers with exponential torsion
growth for random 3–manifolds in a sense that we make precise next.

Any closed 3-manifold M admits a Heegaard decomposition. This means
thatM can be obtained by gluing two handlebodies of some genus g ≥ 0 with
a diffeomorphism of their boundaries. The smallest genus of a handlebody
which gives rise to M in this way is called the Heegaard genus of M .

For a fixed base identification, the manifold M only depends on the el-
ement in the mapping class group Mod(Sg) of the boundary surface Sg of
the handlebody defined by the gluing diffeomorphism. We denote by Nϕ the
closed 3-manifold defined by the gluing map ϕ ∈ Mod(Sg). Thus topological
properties of closed 3-manifolds Nϕ are directly related to properties of the
mapping class ϕ.

This viewpoint was used by Dunfield and Thurston [DT06] to define the
notion of a random 3-manifold using a random walk on the mapping class
group. Embarking from [DT06], the purpose of this work is to study cyclic
covers1 of random hyperbolic 3-manifolds with positive first Betti number.

Let Ig be the Torelli subgroup of Mod(Sg), i.e. the subgroup formed by all
those mapping classes which act trivially on H1(Sg;Z). For g ≥ 3 this is a
finitely generated group. We use the following model for random 3–manifolds
with large Betti number, which is inspired by (but slightly different from)
the Dunfield–Thurston model. Take any probability measure µ on Ig whose
support equals a finite set which generates Ig as a semigroup. Such a µ
defines a random walk on Ig. We say that a property P holds for a random
3-manifold of Heegaard genus g and maximal homology rank if the following
holds: the proportion of 3-manifolds with P which are defined by a gluing
with an element of the n-th step of the walk tends to one as n → ∞,
independently of µ. To motivate this model, note that any 3–manifold M
with Heegaard genus g and first Betti number b1(M) = g is obtained as Nϕ

for some ϕ ∈ Ig (compare Section 2) and by [DT06] (see also [LMW14]),
the Heegaard genus of a 3-manifold obtained from a random gluing in this
sense is g. Furthermore, by a theorem by Maher [Ma10], a random manifold
with Heegaard genus g and maximal homology rank is indeed hyperbolic.

Theorem 1. A random 3-manifold of Heegaard genus g ≥ 3 with maximal
homology rank has a tower of cyclic covers with exponential torsion homology
growth.

A precise version of this result is Theorem 6.1 in Section 6. We do not dis-
cuss the rate of convergence although we believe that it can be derived from
careful analysis of Benoist and Quint’s work on random walks on reductive
groups [BQ14, BQ16] (see also Section 7.6 of [Ko08] and [LMW14]).

A result analogous to Theorem 1 remains true for random 3–manifolds
with positive first Betti number (as opposed to maximal) by considering
random walks not on the Torelli group Ig, but on a homology stabiliser which

1We always assume that cyclic covers are regular.
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is defined to be the subgroup of Mod(S) of all mapping classes preserving
some fixed homology class.

Theorem 1 mainly is a result about the Torelli subgroup of the mapping
class group. It does not rely on any information on the geometry and topol-
ogy of hyperbolic 3-manifolds. Very recently, such topological/geometric
tools were used by Liu [Li16] to construct for an arbitrary closed hyperbolic
3-manifold M a tower of covers of M with exponential torsion homology
growth. These covers are however in general not regular. The existence of
a finite cover M ′ of M which admits a tower of cyclic covers with exponen-
tial torsion homology growth follows from Liu and Sun’s beautiful virtual
domination theorem [S15a, S15b, LiS16].

The methods used in the proof of Theorem 1 can also be used to show
that the first Betti number of a random hyperbolic three-manifold Nϕ does
not increase by passing to a finite Abelian cover of fixed degree.

Theorem 2. Fix a natural number d > 0. A random 3-manifold of Heegaard
genus g ≥ 3 with maximal homology rank has no Abelian cover of degree ≤ d
with Betti number > g.

A precise version of this result is Theorem 6.11 in Section 6. Theorem 9.1
in [DT06] shows that for a fixed number k > 0, a random hyperbolic 3-
manifold of Heegaard genus two does not admit an Abelian cover of degree
at most k with positive first Betti number, where random refers to a random
walk on the entire mapping class group. Our methods can be adapted
to extend the result of [DT06] to arbitrary genus2, as outlined in the last
section. We chose instead to focus on the version stated in Theorem 2 as its
formulation is closer to the formulation of Theorem 1.

As a final application of our methods, we also show that for a random walk
on the full mapping class group, the order of H1(Nϕ,Z)tors grows exponen-
tially in the number of steps of the random walk (Theorem 6.14), answering
a question of Kowalski [Ko08].

The proof of Theorem 1 relies on the relation between the growth rate of
torsion in the homology for a tower of cyclic covers of the three-manifold Nϕ

and the Mahler measure of the Alexander polynomial ∆ of the corresponding
infinite cyclic covering.

Given ϕ ∈ Ig, there is an infinite cyclic covering of Nϕ induced by an

infinite cyclic covering S̃ of the surface S. In Section 3 we give an explicit

description of the homology of S̃ as a Z[Z]-module. We construct a matrix
M(ϕ) with entries in the group ring Z[Z] which describes the action of a

lift of ϕ on H1(S̃). In Section 5 we translate the condition that ∆ has
(logarithmic) Mahler measure 0 into a condition that is detectable by the
action of lifts of ϕ on finite covers Sq of the surface S.

2In [Ri14], Rivin claims this conclusion for solvable covers of random 3-manifolds of
arbitrary Heegaard genus. However, his argument seems incomplete, although we believe
that it can be completed in the Abelian case.
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Using an idea of Looijenga [Lo97], we then study the action of the Torelli
group on the homology of these covers. The core result is Proposition 4.3. It
shows that lifts of elements in the Torelli group generate a dense subgroup
of an algebraic group which is closely related to the automorphism group of
the homology of some finite cyclic cover of S. Using results of Benoist and
Quint [BQ14] on random walks on algebraic groups, we then deduce that
random elements in Ig with probability one violate the conditions implied
by ∆ having Mahler measure zero.

The main novelty of our approach lies in a direct translation of properties
of random walks on the Torelli group into properties of random walks on
algebraic groups. We do not use any of the recent results on random walks
on the mapping class group.

Acknowledgements: This work was carried out in fall 2015 while all
authors were in residence in Bonn. All of us thank Gregor Masbaum for
useful conversations. Sebastian Hensel is grateful to Benson Farb for help-
ful discussions. We are particularly grateful to an anonymous referee who
pointed out an error in an earlier version of this paper and whose suggestions
led moreover to a significant simplification of our argument.

2. Covers of Surfaces and 3–manifolds

In this section we describe the setup we will use to determine and control
the homology of covers of 3–manifolds given by Heegaard splittings. The
terminology introduced in this section will be used throughout the article.

Let S be a surface of genus g ≥ 2, identified once and for all with the
boundary ∂V = S of a handlebody V . Such a handlebody is a compact
manifold with boundary which is homeomorphic to the thickening of an
bouquet of g circles embedded in R3. A meridian of V is an essential simple
closed curve on S which bounds a disk in V .

Let α1, . . . , αg be a set of (oriented) simple closed curves in S which form
a cut system for V . This means that the curves αi are pairwise disjoint
meridians for V whose complement S−∪iαi is connected. In particular, the
αi are pairwise non-homologous and all non-separating. Then

L = ker(H1(S;Z) → H1(V ;Z)) = spanZ{[α1], . . . , [αg]},
and L is a Lagrangian subspace of H1(S,R) with respect to the algebraic
intersection pairing

(·, ·) : H1(S,R)×H1(S,R) → R

on homology.
Let β1, . . . , βg be a set of simple closed curves on S dual to the cut system

{αi}. This means that the curves βi are pairwise disjoint (and transverse to
the curves αj for some smooth structure), and #(αi ∩ βj) = δij . We assume
that the αi, βj are oriented so that (αi, βj) ≥ 0 for all i, j. The αi, βi project
to a symplectic basis a1, . . . , ag, b1, . . . , bg of H1(S;Z) (here ai = [αi] for the
above notation).
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Given any mapping class ϕ ∈ Mod(S) of S, we denote by Nϕ the 3-
manifold given by the Heegaard splitting defined by ϕ:

Nϕ = V ∪ϕ V

With our convention, the identity mapping class gives rise to the manifold
Nid = S2×S1♯ . . . ♯S2×S1 (g copies). We have (see the beginning of Section
8 of [DT06]).

Lemma 2.1.

H1(Nϕ;Z) = H1(S;Z) /〈L,ϕ∗L〉
where ϕ∗ denotes the induced map of ϕ on homology.

The following lemma relates the first Betti number b1(Nϕ) of Nϕ to in-
formation on the gluing map ϕ. For its statement, we need to introduce
certain subgroups of Mod(S). The Torelli group Ig is the group of all map-
ping classes acting trivially on H1(S;Z). The handlebody group is the sub-
group Hg of Mod(S) of those mapping classes which can be represented
by diffeomorphisms of S extending to V . Finally, given homology classes
a, b ∈ H1(S;Z) we denote the homology stabiliser group by

HS(a, b) = {f ∈ Mod(S)|f∗(a) = a, f∗(b) = b}
Note that Ig < HS(a, b) for any a, b.

Lemma 2.2. a) b1(Nϕ) ≤ g with equality if and only if ϕ = ψ1ψ2 where
ψ1 ∈ Ig, ψ2 ∈ Hg.

b) b1(Nϕ) ≥ 1 if and only if there are a ∈ L, b ∈ H1(S;Z), (a, b) = 1 so that
ϕ = ψ1ψ2 with ψ1 ∈ HS(a, b), ψ2 ∈ Hg.

Proof. Lemma 2.1 shows that the first Betti number of Nϕ is at most g.
The same simple observation which leads to Lemma 2.1 (see the discussion
in Section 8 of [DT06]) also yields that the conditions in a), b) are sufficient
for the Betti number bound. We proceed to show necessity.

a) By Lemma 2.1, if b1(Nϕ) = g then ϕ∗L = L. In other words, the matrix
describing ϕ∗ with respect to the symplectic basis introduced above has
the form (

A B
0 C

)

Now any symplectic matrix of such a form is induced by an element of
the handlebody group [Hi06]. The claim follows.

b) By Lemma 2.1, if b1(Nϕ) ≥ 1 then there is some 0 6= v ∈ L ∩ ϕ∗L. Since
ϕ∗ is an automorphism of H1(S,Z) we may assume that v is primitive
(which is equivalent to stating that v can be represented by a simple
closed curve, see [FM12, Proposition 6.2]). Since Hg acts transitively on
the set of primitive vectors in L, by multiplying ϕ from the right by an
element in Hg we may assume that ϕ∗(v) = v. Using the description of
the image of the handlebody group in Sp(2g,Z) given above [Hi06], it
follows that the stabiliser in Hg of an element v ∈ L acts transitively on
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the set of primitive vectors w ∈ H1(S;Z) with (v,w) = 1. The claim
follows.

�

Next we discuss how covers of S give rise to covers of Nϕ. The following
easy lemma can also be found in [DT06]3.

Lemma 2.3. Let σ : π1(S) → G be a surjection onto a group G. Then σ
factors through a map π1(Nϕ) → G if and only if

K = ker(π1(S) → π1(V )) ⊂ ker(σ) and ϕ∗K ⊂ ker(σ).

Proof. This is an immediate consequence of the fact that

π1(Nϕ) = π1(S)/〈〈K,ϕ∗K〉〉
where 〈〈K,ϕ∗K〉〉 denotes the normal closure of the subgroup of π1(S) gen-
erated by K,ϕ∗K. The former statement can e.g. be derived from the
theorem of Seifert–van Kampen. �

In particular, we have the following.

Corollary 2.4. Let σ : π1(S) → G be a surjection onto an Abelian group
G so that K = ker(π1(S) → π1(V )) ⊂ ker(σ). Denote by S′ the cover of S
defined by σ. Let ϕ ∈ Ig be arbitrary. Then:

i) S′ = ∂V ′ for a cover V ′ of V , and the action of the deck group G on S′

extends to the action of the deck group of V ′ → V .
ii) σ factors through a map σϕ : π1(Nϕ) → G.

iii) The cover Ñϕ → Nϕ defined by σϕ is homeomorphic to Nϕ̃, where ϕ̃ is
any lift of ϕ to S′.

The same remains true if ϕ ∈ HS(a, b), assuming that σ : π1(S) → G is
defined by algebraic intersection number (possibly mod q > 0) with a.

Proof. To show the first assertion, suppose that K ⊂ ker(σ) and let V ′ → V
be the cover of the handlebody V whose fundamental group is the image
ker(σ)/K in π1(V ) of the subgroup ker(σ) < π1(S). Note first that

G = π1(S)/ ker(σ) = (π1(S)/K) / (ker(σ)/K)

and hence V ′ → V is a regular cover with deck group G. The induced cover
∂V ′ → ∂V = S has fundamental group exactly ker(σ), and therefore it is
equal to S′ → S.

The second statement is immediate from Lemma 2.3 and the fact that σ
factors through a homomorphism H1(S,Z) → G. In particular, any element
of Ig lifts to V ′, and this lift commutes with the action of G which implies
the third statement. Under the extra assumption given at the end, the same
is true for ϕ ∈ HS(a, b). �

3In the terminology of [DT06]: a map σ induces a cover of Nϕ if and only if σ extends
over V and ϕ · σ extends over V .
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We call a cover S′ → S as in Corollary 2.4 a K–cover. For any K–cover,
by part i) of that corollary, there is a subspace

L′ = ker(H1(S
′;Z) → H1(V

′;Z))

and thus, by Lemma 2.1, we obtain

Proposition 2.5. With notation as above, we have

H1(Ñϕ;Z) = H1(Nϕ̃;Z) = H1(S
′;Z)

/〈
L′, ϕ̃∗L

′〉

where ϕ̃ is any lift of ϕ to S′.

We will also need the following version which is useful to compare Betti
numbers. To this end, define

E = ker(H1(S
′;Z) → H1(S;Z))

and let L′
E = L′ ∩ E. By transfer, we have

H1(S
′;Q) = H1(S;Q)⊕ (E ⊗Q).

Furthermore, E and this decomposition is preserved by ϕ̃∗. This, together
with Proposition 2.5 yields the following useful characterisation.

Proposition 2.6. With notations as above, we have

H1(Ñϕ;Q) = H1(Nϕ;Q)⊕
(
E ⊗Q

/〈
L′
E ⊗Q, ϕ̃∗L

′
E ⊗Q

〉)

In particular, b1(Ñϕ) > b1(Nϕ) if and only if

L′
E + ϕ̃∗L

′
E ( E

is not a lattice.

In the sequel, two special kinds ofK–covers will be particularly important.
Namely, given any primitive vector a ∈ L, the kernel of the map which
associates to an element α ∈ π1(S) the algebraic intersection number with a
of the homology class defined by α (resp. its algebraic intersection number
with a mod q for q ∈ N) defines an infinite cyclic cover S∞ → S (resp. a
cyclic cover Sq → S of order q). Informally, we call such a cover the cover
defined by algebraic intersection number with a.

By Lemma 2.2, if Nϕ has Betti number at least 1, then a may be chosen
such that these covers induce covers of the 3–manifold Nϕ. In the sequel we
always do so.

3. Cyclic Covers

Recall from Section 2 the choice a1, . . . , ag, b1, . . . , bg of a symplectic ba-
sis of H1(S,Z). The classes a1, . . . , ag generate the kernel L of the map
H1(S;Z) → H1(V ;Z) induced by the inclusion S = ∂V → V . Let S∞ → S
be the infinite cyclic K-cover of S defined by algebraic intersection num-
ber with ag. There is a corresponding infinite cyclic cover V∞ → V . Since
linear functionals on H1(S,Z) defined by algebraic intersection with non-
separating simple closed curves generate H1(S;Z) and the mapping class
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group acts transitively on such curves, the results in this section in fact
hold true for any cyclic K–cover S∞ → S. We will restrict to the case of
intersection with ag for clarity.

3.1. Homology of the Infinite Cyclic Cover. The goal of this subsec-
tion is to give a fairly explicit (but non-canonical) description of the first
homology of S∞ as a module over the group ring Z[Z] of the deck group Z

of S∞.
Denote by Y ⊂ S the complementary subsurface of the simple closed

curve αg on S. Choose a preferred lift Ỹ of Y to S∞, i.e. Ỹ ⊂ S∞ is a
connected subsurface with boundary which is mapped by the covering map
S∞ → S homeomorphically onto Y .

For i, j ≤ g − 1 the curves αi, βj (defining the homology classes ai, bj)
admit unique lifts

α̃1, . . . , α̃g−1, β̃1, . . . , β̃g−1

to Ỹ . Let α̃g be the lift of αg contained in the closure of Ỹ whose orientation

agrees with the boundary orientation of Ỹ . Note that this makes sense since
the orientation of S induces an orientation of Ỹ and since αg is an oriented

curve4. Denote by ãi, b̃j (1 ≤ i ≤ g, 1 ≤ j ≤ g − 1) the homology classes

in H1(S∞;Z) of the curves α̃i, β̃j . We have an isomorphism H1(Y ;Z) →
H1(Ỹ ;Z) which sends ai, bj to ãi, b̃j .

As usual, we denote by Z[G] the integral group ring of a group G. Then
Z[Z] has an obvious identification with the ring Z[t, t−1] of integral Laurent
polynomials. If H is a Z–module, we write H[t, t−1] to mean H⊗ZZ[Z]. We
also choose τ a generator of the deck group of S∞.

Lemma 3.1. The map

H1(Y ;Z)[t, t−1]⊕ Z ∼= Z[Z]2g−2 ⊕ Z → H1(S∞;Z)

induced by sending ai to ãi, bi to b̃i for i < g and the generator of the trivial
Z[Z]–module Z to ãg is an isomorphism of Z[Z]–modules.

Furthermore, the image of L[t, t−1]⊕ Z under this map is exactly

ker(H1(S∞;Z) → H1(V∞;Z)).

Proof. Recall that Ỹ is homeomorphic to Y , and that the subsurfaces τnỸ
are pairwise disjoint (n ∈ Z). The integral homology of Y equals Z2g−1 =
F ⊕Zãg where the free Z-module F of rank 2g− 2 is spanned by the classes

ãi, b̃j (1 ≤ i, j ≤ g − 1).

The closures of τnỸ and τn+1Ỹ intersect in the lift τnα̃g of αg. Enlarging

slightly the set Ỹ to a neighborhood of its closure allows to apply the Mayer

Vietoris sequence to ∪iτ
iỸ to calculate the homology of S∞. We find that

H1(S∞;Z) = Π(⊕i∈ZH1(τ
iỸ ;Z))

4This just serves to fix a specific lift, we could take any.
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where the map Π is the identity on ⊕iτ
iF and identifies τ iãg with τ i+1ãg.

Now observe that the deck group Z acts on both sides of this equation, and
that the map Π is equivariant for this action. Thus H1(S∞;Z) = Z[Z]2g−2⊕
(Z[Z]/ ker(ε)) where ε : Z[Z] → Z is the Z-linear map defined by ε(g) = 1
for all g ∈ Z. This shows the first assertion of the lemma.

The second assertion follows from the fact that the αi normally generate
the kernel of π1(S) → π1(V ). �

We define

F∞ = spanZ[Z](ã1, . . . , ãg−1, b̃1, . . . , b̃g−1)

and note that it is a free Z[Z]-submodule of H1(S∞;Z). We will frequently
use the decomposition

(1) F∞ = C∞ ⊕D∞

D∞ = spanZ[Z]{ãi, i < g}, C∞ = spanZ[Z]{b̃i, i < g}.
By the above discussion, both C∞ and D∞ are free Z[Z]-modules of rank
g − 1.

3.2. Matrices.

Lemma 3.2. Suppose ϕ ∈ HS(ag, bg). Then ϕ lifts to S∞, the lift commutes
with the deck group action, and the induced map ϕ̃∗ on homology preserves
F∞.

Proof. The fact that ϕ lifts is immediate from the fact that HS(ag, bg) pre-
serves algebraic intersection number with ag. The same fact also implies
that any lift of ϕ commutes with the deck group action.

We are left with showing the last claim. Let as before τ be a generator
of the deck group of S∞. By Lemma 3.1, for any i < g there are numbers
nak,j, n

b
k,j,m ∈ Z so that

ϕ̃∗(ãi) =
∑

j<g,k∈Z
nak,jτ

kãj +mãg +
∑

j<g,k∈Z
nbk,jτ

kb̃j .

Thus we have

ϕ∗(ai) =
∑

j<g,k∈Z
nak,jaj +mag +

∑

j<g,k∈Z
nbk,jbj

Since ϕ ∈ HS(ag, bg) we compute

m = (ϕ∗(ai), bg) = (ϕ∗(ai), ϕ∗(bg)) = (ai, bg) = 0.

This implies ϕ̃∗(ãi) =
∑

j<g,k∈Z n
a
k,jτ

kãj +
∑

j<g,k∈Z n
b
k,jsτ

kb̃j ∈ F∞. The

case of ϕ̃∗(̃bi) is similar. �

Definition 3.3. Let ϕ ∈ HS(ag, bg).
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i) Denote by M∞(ϕ) the (2g − 2) × (2g − 2)–matrix with entries in Z[Z]
describing the action of a lift ϕ̃∗ of ϕ on F∞, with respect to the basis

ã1, . . . , ãg−1, b̃1, . . . , b̃g−1. The matrix M∞(ϕ) is well-defined up to a
unit in Z[Z] (namely, it depends on the choice of a lift of ϕ, any two of
which differ by multiplication with some tk).

ii) Denote by B∞(ϕ) the “bottom-left block” of M∞(ϕ); explicitly, B∞(ϕ)
is the (g− 1)× (g− 1)-matrix defined by the requirement that for j < g

(2) ϕ̃∗(ãj) = d+

g−1∑

i=1

(B∞(ϕ))i,j b̃i

where d ∈ D∞. Again, B∞(ϕ) is only well-defined up to a unit in Z[Z]
(in the same sense as above).

Similarly, for ϕ ∈ HS(ag, bg) the determinant

detB∞(ϕ) ∈ Z[Z]

is defined up to a unit in Z[Z]. We will usually assume that the unit is
chosen so that detB∞(ϕ) is a polynomial.

Remark 3.4. If ϕ ∈ Ig is an element of the Torelli group, then we can
write M∞(ϕ) = Id + M ′

∞(ϕ) where M ′
∞(ϕ) is a matrix with entries in

the augmentation ideal a = ker(Z[Z] → Z). This can be proved with an
argument very much like Lemma 3.2.

3.3. Infinite Cyclic Covers of 3-Manifolds. In light of equation (2), the
matrix B∞(ϕ) defines a map D∞ → C∞ which describes part of the action
of ϕ̃∗. Its importance stems from the following immediate consequence of
Proposition 2.5.

Proposition 3.5. Let ϕ ∈ HS(ag, bg) and let (Nϕ)∞ → Nϕ be the cover of
Nϕ induced by S∞ → S. Then we have, as Z[Z]–modules

H1((Nϕ)∞;Z) = C∞ /imB∞(ϕ)

Thus B∞(ϕ) is a presentation matrix of the Z[Z]–module H1((Nϕ)∞;Z).

3.4. Finite Cyclic Covers. As we will explain in detail in Section 6, expo-
nential torsion growth in a tower of cyclic covers of the manifold Nϕ will be
governed by the logarithmic Mahler measure of the polynomial detB∞(ϕ).
In Section 5 we will describe a criterion for positivity of this Mahler measure
which is detectable in finite sub-covers of S∞. In this subsection we explain
how B∞(ϕ) affects the action on homology of lifts to finite sub-covers.

Choose q ∈ N≥3 and let Sq be the q-fold cyclic cover of S defined by
algebraic intersection number with ag mod q; denote by G ∼= Z/qZ its
deck group. We want to describe the homology of Sq as a Z[G]-module
(compare [Lo97, Section 4] for a very similar discussion) and its relation to
the homology of S∞.
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The Chevalley-Weil theorem [CW34] states that as a G-representation
space, we have

H1(Sq;C) ∼= C[G]2g−2 ⊕ C2.

In the case of cyclic covers, we can obtain this more explicitly (and with

integral coefficients) as follows: Sq is covered by S∞; denote by α̂i, β̂i, i < g

the images of α̃i, β̃i.
With an argument as in Lemma 3.1 one easily sees that the homology

classes âi, b̂i, 1 ≤ i < g of the curves α̂i, β̂i span a free Z[G]-submodule

Z[G]2g−2 of H1(Sq;Z). Choose lifts α̂g of αg and β̂g of βg. It is easy to see

that their homology classes âg, b̂g span a trivial Z[G]-module Z2.
Thus,

(3) Fq = spanZ[G]{âi, b̂i, i < g}

is a free Z[G]-submodule of H1(Sq;Z) which decomposes as

Fq = Cq ⊕Dq, Dq = spanZ[G]{âi, i < g}, Cq = spanZ[G]{b̂i, i < g}

As in Lemma 3.2, any lift ϕ̂ of an element ϕ ∈ HS(ag, bg) respects
the decomposition H1(Sq;Z) ∼= Fq ⊕ Z2. Hence, we may define matrices
Mq(ϕ), Bq(ϕ) as in Definition 3.3 (replacing all lifts ·̃ to S∞ by the corre-
sponding lifts ·̂ to Sq).

Summarising, we have the following.

Lemma 3.6. With the identifications as above, the covering map S∞ → Sq
induces on homology a map

H1(S∞;Z) ∼= Z[Z]2g−2 ⊕ Z → Z[G]2g−2 ⊕ Z2 ∼= H1(Sq;Z)

inducing via the quotient homomorphism Z → Z/qZ a map between the free
modules

F∞ = C∞ ⊕D∞ → Cq ⊕Dq = Fq

which respects the direct sum decompositions. Furthermore, Mq(ϕ), Bq(ϕ)
are the images of M∞(ϕ), B∞(ϕ) under coordinate-wise application of the
ring morphism Z[Z] → Z[G] induced by Z → Z/qZ.

4. The Torelli representation for a finite cover

The purpose of this section is to show that for a finite cover as discussed
in Section 3.4, the matrices Mq(ϕ), ϕ ∈ Ig map to a Zariski dense subset of
some suitable algebraic group. This will be the main ingredient in Section 6
that allows to use the results by Benoist and Quint on random walks. We
can restrict here to the case of ϕ ∈ Ig for simplicity; as Ig < HS(ag, bg) the
image of HS(ag, bg) will then also be Zariski dense.

The arguments rest on the results in [Lo97, Section 4]. We begin with
explaining these results in the form we need.
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4.1. Skew-Hermitian modules. We require a few classical results on au-
tomorphism groups of skew-Hermitian modules; we only summarise the most
important points here, details can be found in [HO89].

Let R be a ring with an involution · : R → R which is a homomorphism
with respect to the additive structure of R. Let M be a module over R.
A skew-Hermitian form on M is a non-degenerate sesqui-linear form 〈·, ·〉 :
M×M → R such that

〈x, y〉 = −〈y, x〉
for all x, y ∈ M.

Given a module (M, 〈, 〉) with such a form, we will denote the group of
automorphisms that preserve the form by

U(M) = {α ∈ Aut(M)| 〈αx, αy〉 = 〈x, y〉} .
It is well known that in the special case where M = C2n for some n ∈ N

and the involution is given by complex conjugation, we can find a basis

{xi, yi}ni=1

of C2n such that

〈xi, yj〉 = δij and 〈xi, xj〉 = 〈yi, yj〉 = 0

for all 1 ≤ i, j ≤ n. In this case we will write

U(M) = U(n, n).

The usual symplectic group Sp2n(R) is precisely the subgroup of U(n, n) of
all those matrices with real entries. We will write SU(n, n) for the subgroup
of U(n, n) of matrices with determinant 1.

4.2. The representation. We are now ready to revisit Looijenga’s argu-
ments from [Lo97, Section 4] to study the set of matrices Mq(ϕ) for ϕ ∈ Ig
(compare Section 3.4). We need the following set up.

Fix an integer q ≥ 3 and let G be a cyclic group of order q. Denote by
k = Q[ζq] the extension of Q by the q-th roots of unity. We identify k with
a subfield of the complex numbers. There is a map

ι : Z[G] → k ⊂ C

mapping a generator of G to a primitive q-th root of unity5. We often
consider the image of ι as contained in the complex numbers rather than in
the abstract field k. Note that ι is not unique. Different choices of ι differ
by an element of the Galois group of the field k. If q is prime then ι can
be chosen to send any given generator 1 ∈ G to any prescribed q–th root of
unity. This freedom of choice will be important later (in Section 6). Until
then, all arguments will work for any choice of ι.

5in the notation of [Lo97], we have k ∼= KG, the field defined by the trivial cyclic
quotient of G
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Under ι, the involution on Z[G] induced by g = g−1 corresponds to com-
plex conjugation:

ι(p) = ι(p), ∀p ∈ Z[G].

If x ∈ Z[G]n, we denote by ιx ∈ Cn the vector obtained by applying ι
coordinate-wise.

As explained in Section 3, we may assume without loss of generality that
Sq → S is the regular cyclic cover of degree q with deck group G induced by
algebraic intersection number mod q with the curve αg. We use the notation
from that section.

The homology H1(Sq;Z) is equipped with the usual intersection form (·, ·)
as well as with a skew-Hermitian form Φ : H1(Sq;Z) × H1(Sq;Z) → Z[G]
(sometimes called Reidemeister pairing) given by

Φ(x, y) =
∑

g∈G
(x, gy)g.

Because G preserves the submodule Fq ⊂ H1(Sq;Z), the bilinear form Φ
defines a skew-Hermitian form on Fq

∼= Z[G]2g−2.
Furthermore, we have for all x, y ∈ Z[G]2g−2 and ϕ ∈ Ig

(4) Φ(Mq(ϕ)x,Mq(ϕ)y) = Φ(x, y)

since each lift of ϕ preserves the intersection form (·, ·) and commutes with
the deck group action.

Recall from Subsection 3.4 the definition of the classes âi, b̂k ∈ H1(Sq;Z).

In what follows, we choose a basis {xi, yi}g−1
i=1 for C2g−2 such that:

ι(âi) = xi and ι(b̂i) = yi

for all i = 1, . . . , g− 1. We also define a skew-Hermitian form 〈·, ·〉 on C2g−2

by
〈xi, yi〉 = δij and 〈xi, xj〉 = 〈yi, yj〉 = 0

for all i, j = 1, . . . , g − 1.
We now have the following

Lemma 4.1. For all x, y ∈ H1(Sq;Z):

ιΦ(x, y) = 〈ιx, ιy〉
Proof. We have:

Φ(âi, b̂j) = δij and (âi, âj) = (b̂i, b̂j) = 0

The form Φ is skew-Hermitian and ι is linear by definition, hence the lemma.
�

By Lemma 4.1 and equation (4), for all ϕ ∈ Ig the matrix ιMq(ϕ) is
contained in the group U(g − 1, g − 1) of skew Hermitian automorphisms of
C2g−2.

The assignment ϕ 7→ ιMq(ϕ) is not a representation of Ig since the matrix
Mq(ϕ) depends on a choice of a lift of ϕ to our cyclic cover, and therefore
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is defined only up to a unit in Z[G] (compare Section 3). The (complex)
matrix ιMq(ϕ) is thus also only defined up to multiplication by a q–th root
of unity.

To avoid these problems, let Î(q)
g be the group of all lifts to Sq of all

elements of Ig. We then have a short exact sequence

1 → G→ Î(q)
g → Ig → 1

and an actual representation

ρq : Î(q)
g → U(g − 1, g − 1).

In [Lo97], Looijenga studied this representation. More generally, denote

by Mod(S)(q) the finite index subgroup of Mod(S) of all elements which

admit a lift to Sq. The group Ig is a normal subgroup of Mod(S)(q). As
before, there is an exact sequence

1 → G→ M̂od(S)(q) → Mod(S)(q) → 1.

Using the action on homology, we obtain a representation ρ̂q : M̂od(S)(q) →
U(g − 1, g − 1) extending the representation ρq.

Denote by U♯(g − 1, g − 1) the subgroup of U(g − 1, g − 1) consisting of
matrices whose determinant is equal to a square of a q-th root of unity. Note
that SU(g− 1, g− 1) is a finite index subgroup of U♯(g− 1, g− 1). Theorem
2.4 of [Lo97] states the following.

Theorem 4.2. Let g ≥ 3, q ≥ 3 and let Rq be the ring of integers in the
number field Q[ζq]. Then

ρ̂q

(
M̂od(S)

)
= U ♯(g − 1, g − 1;Rq).

Here the group U ♯(g−1, g−1;Rq) is just the subgroup of U ♯(g−1, g−1)
of matrices with coefficients in Rq.

4.3. Denseness. We are now ready to prove that the image of the repre-
sentation ρq defined above is Zariski dense in SU(g − 1, g − 1).

The proof of the following proposition was suggested to us by an anony-
mous referee and replaces an earlier argument which followed Looijenga’s
paper [Lo97].

Proposition 4.3. Let g ≥ 3 and q ≥ 3; then

ρq

(
Î(q)
g

)
∩ SU(g − 1, g − 1)

is a finite index subgroup of SU(g − 1, g − 1;Rq).

Remark 4.4. The proposition is also true for g = 2 and q = 5 or q ≥ 7
(compare [Lo97] and the proof below). Since we only need the g ≥ 3 case,
we do not give details.
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Proof. By Theorem 4.2, the image of the group M̂od(S)(q) under the repre-
sentation ρ̂q contains the group SU(g−1, g−1;Rq). Now for g ≥ 3, the group
SU(g − 1, g − 1;Rq) is arithmetic and of Q-rank at least two. Furthermore,
it contains the group

A = ρq

(
Îg

(q)
)
∩ SU(g − 1, g − 1;Rq)

as a normal subgroup. Thus by Margulis’s normal subgroup theorem, either
A is finite, or it has finite index. Thus we have to show that the group A is
infinite.

Write M = ρ̂−1
q (SU(g− 1, g− 1;Rq)); since U

♯(g− 1, g− 1;Rq) is a finite
central extension of SU(g−1, g−1;Rq), M is a finite index normal subgroup

of M̂od(S)(q) which intersect the Torelli group Îg
(q)

in a finite index subgroup
P.

Let us denote by Π : M → Sp(2g,Z) the natural projection. As M is a
subgroup of Mod(S) of finite index, Π(M) = H has finite index in Sp(2g,Z)
and hence is a lattice of the simple Lie group Sp(2g,R) of rank g ≥ 3. Taking
the quotient of M by the kernel K < M of the homomorphism ρ̂ gives rise
to an exact sequence

(5) 1 → P/K ∩ P → M/K → H/Π(K) → 1

where the group M/K is isomorphic to SU(g − 1, g − 1;Rq).

Now if the image of the group Îg
(q)

under the representation ρq is finite
then P/K is a finite group. Thus this sequence describes the arithmetic
group SU(g − 1, g − 1;Rq) as an extension of the group H/Π(K) by a finite
group. This implies that H/Π(K) is infinite. Margulis’s normal subgroup
theorem now shows that Π(K) is a finite normal subgroup of the higher rank
lattice H.

NowH < Sp(2g,R) is Zariski dense and therefore a finite normal subgroup
of H is normalized by the entire simple group Sp(2g,R). Then the group
has to be central in Sp(2g,R) and hence either it is trivial, or it equals ±1.
As a consequence, the group H/Π(K) either equals a lattice in Sp(2g,R), or
a lattice in the quotient P Sp(2g,R) of this group by its center.

To summarize, under the assumption that ρg(P) is not a subgroup of
SU(g − 1, g − 1;Rq) of finite index we conclude that the arithmetic group
SU(g − 1, g − 1;Rq) is a finite extension of a lattice in PSp(2g,R). But
SU(g− 1, g− 1;Rq) is an irreducible lattice in a higher rank semi-simple Lie
group G which does not contain any factor locally isomorphic to the higher
rank simple Lie group Sp(2g,R). This contradicts Margulis’ super-rigidity
theorem for lattices. �

Remark 4.5. Let ε : Q[ζq] → Z be the Z-linear augmentation map defined
by ε(ζq) = 1 for ever q-th root of unity ζq. It follows from the proof of
Proposition 4.3 that the image of Ig under ρq intersects SU(g− 1, g− 1;Rp)
in the finite index normal subgroup defined as the preimage of the identity
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under the map which associates to a matrix its coordinate-wise image under
ε. We do not know whether the image coincides with this group.

In the following corollary, we view SU(g − 1, g − 1;Rq) as a countable
subgroup of the Lie group SU(g−1, g−1) (and not as an arithmetic group).

Corollary 4.6. For g ≥ 3, q ≥ 3 the group ρq

(
Î(q)
g

)
∩ SU(g − 1, g − 1) is

Zariski dense in SU(g − 1, g − 1).

Proof. By Proposition 4.3, if the degree over Q of the number field Q[ζq] is

at least four then ρq

(
Î(q)
g

)
∩ SU(g − 1, g − 1) is a lattice in an algebraic

group which has SU(g − 1, g − 1) as a factor. In this case the image group
is dense in the usual topology.

Otherwise, as q ≥ 3, the degree over Q of Q[ζq] is two and ρq

(
Î(q)
g

)
∩

SU(g − 1, g − 1) is a lattice in SU(g − 1, g − 1) and hence Zariski dense as
well. �

4.4. The action on subspaces: Part I. The core ingredient in the proof
of the main theorem will be to control the determinant of Bq(ϕ) (introduced
in Section 3). This will be done using random walks on algebraic groups
in Section 6.1. In this section we describe how to detect this determinant,
using the action of U(g − 1, g − 1) on subspaces of C2g−2.

Recall that the exterior product of a basis of a (g − 1)–dimensional sub-
space of C2g−2 is a pure vector in ∧g−1C2g−2. Thus the action of U(g −
1, g− 1) on the Grassmannian of half-dimensional subspaces of C2g−2 is en-
coded in the natural representation of U(g − 1, g − 1) on ∧g−1C2g−2. This
representation is irreducible (see Section 6.3).

Let {xi, yi}g−1
i=1 denote a basis of C2g−2 with respect to which 〈·, ·〉 takes

the standard form (see Subsection 4.2). Let e, f ∈ ∧g−1C2g−2 be defined by

e = x1 ∧ · · · ∧ xg−1 and f = y1 ∧ · · · ∧ yg−1.

Recall that we want to control the lower left block in the image of our

random element of Î(q)
g under ρq. The first observation is that this deter-

minant appears as the f -coefficient of ρq(ϕ̂)e. To this end, let (·, ·) denote
the Hermitian inner product on ∧g−1C2g−2 corresponding to the Hermitian
inner product on C2g−2 for which the basis {xi, yi}g−1

i=1 is orthonormal.

Lemma 4.7. Let ϕ ∈ Ig be arbitrary, and let ϕ̂ ∈ Î(q)
g be any lift of ϕ.

Then
|(ρq(ϕ̂)e, f)| = |ιdet(Bq(ϕ))|.

Proof. First note that a lift ϕ̂ is defined up to multiplication by a deck
group element, which under ι maps to multiplication by a complex number
of absolute value 1. Thus both sides of the inequality are independent of
the choice of lift. Similarly, we can choose our preferred lift of ϕ to compute
ιBq(ϕ).
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Let

E =
{
xi1 ∧ · · · ∧ xik ∧ yj1 ∧ · · · ∧ yjg−1−k

| 0 ≤ k ≤ g − 1, i1 < . . . < ik,
j1 < . . . < jg−1−k

}
.

E is a orthonormal basis for ∧g−1C2g−2. Because f is orthogonal to all
elements of E not equal to it, we obtain

(ρq(ϕ)e, f) =

g−1∑

i1,...,ig−1=1

(
(Bq(ϕ))1,i1 yi1 ∧ . . . ∧ (Bq(ϕ))g−1,ig−1

yig−1 , f
)

=

g−1∑

i1,...,ig−1=1

(yi1 ∧ . . . ∧ yig−1 , f)

g−1∏

j=1

(Bq(ϕ))j,ij .

The inner products in the terms satisfy

(yi1 ∧ . . . ∧ yig−1 , f) =

{
ε(i1, . . . , ig−1) if the map j 7→ ij is bijective
0 otherwise

where ε(i1, . . . , ig−1) denotes the sign of the map j 7→ ij viewed as a permu-
tation. As such, we can view the sum above as a sum over elements of the
symmetric group on g − 1 letters Sg−1. We obtain:

(ρq(ϕ)e, f) =
∑

π∈Sg−1

ε(π)

g−1∏

j=1

(Bq(ϕ))j,π(j) ,

where ε(π) denotes the sign of a permutation π ∈ Sg−1. The expression
above is the Leibniz formula for the determinant of Bq(ϕ). �

5. Mahler measures

In this section we review some basic properties of the logarithmic Mahler
measure of polynomials and establish conditions which are satisfied in the
case that the polynomials detB∞(ϕ) from Section 3 have logarithmic Mahler
measure zero.

5.1. Mahler measure obstructions. First, we collect some classical facts
on integral polynomials in a single variable and their Mahler measures.

Let P be a polynomial in one variable with integral coefficients. The
(logarithmic) Mahler measure of P is defined as

m(P ) =
1

2π

∫ 2π

0
ln(|P (exp(iθ))|)dθ.

Note that m(tkP ) = m(P ) for all k ∈ Z.
We let M(P ) = exp(m(P )) be the multiplicative Mahler measure of P .

If we speak simply of Mahler measure, we will usually mean the logarithmic
Mahler measure. If we write P (t) = a

∏
i(t − αi) with αi ∈ C then by

Jensen’s formula, we have

M(P ) = |a|
∏

max(1, |αi|).
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For n ∈ N, the nth cyclotomic polynomial Φn in t is the unique irreducible
polynomial (over Z) that is a divisor of tn−1 but not of tk−1 for any k < n,
k ∈ N. As such, its roots are exactly the nth primitive roots of unity. This
in turn implies that

deg(Φn) = ϕ(n)

for all n ∈ N, where ϕ : N → N denotes Euler’s totient function.
The following proposition is a well-known application of a result of Kro-

necker [Kr57] (compare e.g. [EW, Theorem 1.31]).

Proposition 5.1. Let P (t) be a polynomial in one variable with integral
coefficients. Then m(P (t)) ≥ 0, with equality if and only if P (t) is a product
of cyclotomic polynomials and powers of t.

From the proposition above we will derive a condition on polynomials of
Mahler measure zero. Before we can prove it, we need two classical results
on cyclotomic polynomials and Euler’s totient function. To this end, let
c(Φm) denote the maximum of the absolute values of the coefficients of Φm.
The following bound on c(Φm) is due to Maier.

Proposition 5.2. [Ma96] Let η : N → R be a function so that

η(n) → ∞
as n→ ∞. Then for all but finitely many m ∈ N we have

c(Φm) ≤ mη(m).

Of course, the set of m ∈ N for which the above bound above does not
hold depends on the choice of function η.

Finally, we need the following bound for the totient function (see e.g.
[HW08, Theorem 327]). In fact, sharper estimates on ϕ(n) are available,
but the following is enough for our purpose.

Proposition 5.3. For every δ ∈ (0, 1) we have:

ϕ(n)

nδ
→ ∞

as n→ ∞.

We are now ready to prove our condition on polynomials.

Proposition 5.4. For every α > 0 there exists a finite set Kα ⊂ N with the
following property. If P ∈ Z[t] satisfies m(P ) = 0 then

• either Φk is a factor of P for some k ∈ Kα,
• or for all ξ ∈ C with |ξ| = 1 we have

|P (ξ)| ≤ exp(α deg(P )).

Proof. Proposition 5.3 (applied to δ = 1/2) allows us to find some n0 ∈ N

so that

ϕ(n) >
√
n,
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for all n ≥ n0. Define η : N → R by

η(n) = α ·
√
n

log(n)
− 1.

Using Proposition 5.2, we obtain a finite set K ′ ⊂ N so that the coefficients
of all Φm for m /∈ K ′ are bounded in absolute value by mη(m). This implies
that for m /∈ K ′ we have

|Φm(ξ)| ≤ ϕ(m) ·mη(m)

for all ξ ∈ C with |ξ| = 1. The same holds trivially for the polynomial
P (t) = t.

Define Kα ⊂ N by

Kα = K ′ ∪ {0, 1, . . . , n0}.
We claim that the proposition holds for this set. As such, we need to check
the inequality in the statement of the proposition for all polynomials of
Mahler measure zero not containing any factor Φk for some k ∈ Kα.

Let P ∈ Z[t] a polynomial with m(P ) = 0. Proposition 5.1 tells us that
we may write

P (t) = tk
r∏

i=1

Φmi
(t)

for some m ∈ Nr and k, r ∈ N. Assume that mi /∈ Kα for all i = 1, . . . , r.
We have

deg(P ) = k +

r∑

i=1

ϕ(mi) >

r∑

i=1

√
mi.

By the choice of Kα, for all ξ ∈ C with |ξ| = 1 we obtain that

|P (ξ)| ≤
r∏

i=1

ϕ(mi)m
α
√
mi/ log(mi)−1

i ≤
r∏

i=1

m
α·√mi/ log(mi)
i ,

where we have used that ϕ(n) ≤ n for all n ∈ N. Hence

|P (ξ)| ≤ exp

(
α

r∑

i=1

√
mi

)
≤ exp(α · deg(P )).

�

6. Finishing the proof

In this section we finish the proof of our main theorems. We will again
restrict to the case of random walks on the Torelli group. The case of the
homology stabilisers is completely analogous.

Let S be a surface of genus g ≥ 3 and let σ : π1(S) → Z be a surjection
as in Section 2 so that ker(σ) ⊃ K = ker(π1(S) → π1(V )). Let S∞, Sq be
the covers considered in Section 3 induced by σ. For ϕ ∈ Ig and q ∈ N let
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(Nϕ)q denote the cover of Nϕ defined by the map π1(Nϕ) → Z/qZ which
factors through σ. Say that ϕ has property Eσ if

lim
q→∞

log |H1((Nϕ)q;Z)tor|
q

exists and is positive.
Our goal is to prove:

Theorem 6.1. Let µ be any finitely supported measure on the Torelli group
Ig < Mod(S) whose support generates Ig as a semigroup. Then we have

µ∗n ({ϕ ∈ Ig, ϕ has property Eσ}) → 1

as n→ ∞.

By Proposition 3.5, B∞(ϕ) is a presentation matrix forH1((Nϕ)∞;Z). We

can now apply [Ra12, Theorem 3.1] (wherem = 1, ϕ = σ, X̂ = (Nϕ)∞,Xq =
(Nϕ)q) and obtain the following.

Proposition 6.2. With notation as above, if m(detB∞(ϕ)) > 0 then

lim
q→∞

log |H1(Xq;Z)tor|
q

= m(detB∞(ϕ))

exists and is positive.

Thus, if ϕ does not have Eσ, then we have that m(detB∞(ϕ)) = 0.
The rest of this section will be devoted to showing that with probability
converging to one, the logarithmic Mahler measure of detB∞(φ)) does not
vanish. In order to be able to apply results on random walks on Lie groups
later on, we first translate this into a condition on the image of (lifts of) ϕ
under the representations ρm for some m ∈ N.

6.1. Matrix Conditions. Recall from Lemma 4.7 that the determinant of
Bq(ϕ) can be computed from the action of ρq(ϕ̂) on ∧g−1C2g−2. Using the
above, the condition in Proposition 5.4 translates as follows. Here, e and f
are as in Section 4.4.

Proposition 6.3. Let α > 0 and let µ be a finitely supported probability
measure on Ig whose support generates Ig as a semigroup. There exists a
finite set Kα,µ ⊂ N such that the following holds.

Let n be arbitrary and ϕ ∈ supp (µ∗n) ⊂ Ig with m(detB∞(ϕ)) = 0. Then

• either Φk is a factor of detB∞(ϕ) for some k ∈ Kα,µ, and therefore
(ρk(ϕ̂)e, f) = 0 for that k and any lift ϕ̂ of ϕ to Sk,

• or for all q ∈ N we have

|(ρq(ϕ̂)e, f)| ≤ exp(α · n)

for any lift ϕ̂ of ϕ to Sq.
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Proof. Let S = supp(µ) ⊂ Ig and let us choose lifts of all s ∈ S so that the
corresponding M∞(s) are matrices whose coefficients are polynomials (as
opposed to Laurent polynomials). Because S is finite, this may be achieved
by multiplying by some large power of t.

We will first derive a degree bound on det(B∞(ϕ)) for ϕ ∈ supp (µ∗n).
Let

dµ = max
{
deg

(
(M∞(s))ij

)
| i, j = 1, . . . , 2g − 2, s ∈ S

}
.

Any M∞(ϕ) for ϕ ∈ supp (µ∗n) is obtained by multiplying at most n ele-
ments of {M∞(s)| s ∈ S}. Hence the coefficients of M∞(ϕ) have degree at
most dµ ·n. The polynomial det(B∞(ϕ)) is obtained by taking the determi-
nant of a (g − 1)× (g − 1) block of M∞(ϕ). As such, we obtain

deg(det(B∞(ϕ))) ≤ (g − 1) · dµ · n.
Set α′ = α/((g − 1)dµ), and let Kα′ ⊂ N be the finite set obtained from

Proposition 5.4 applied with α′. We put Kα,µ = Kα′ .

Now suppose that ϕ is so that m(detB∞(ϕ)) = 0. Then by Proposi-
tion 5.4, either Φk divides det(B∞(ϕ)) for some k ∈ Kα′ or

|det(B∞(ϕ))(ξ)| ≤ exp(α′ deg(det(B∞(ϕ))))

for all ξ with |ξ| = 1. In the first case, every primitive k–th root of unity is
a zero of Φk and hence of det(B∞(ϕ)). Since ιdet(Bk(ϕ)) is obtained from
det(B∞(ϕ)) by evaluating at a primitive k–th root of unity, this implies the
claim (using Lemma 4.7).

In the latter case, the same argument yields that, for ζq a primitive q-th
root of unity,

|(ρq(ϕ̂)e, f)| = |ιdet(Bq(ϕ))| = |det(B∞(ϕ))(ζq)|
≤ exp(α′ deg(det(B∞(ϕ)))) ≤ exp(αn).

�

6.2. Set-up and walks on Î(q)
g . Let q ≥ 3, and ζq be a primitive q-th

root of unity. Then k = Q[ζq] is the cyclotomic field of degree ϕ(q) over Q.
Recall from Subsection 4.2 that we have a ring morphism

ι : Z[G] → k ⊂ C

where G is the cyclic group with q elements. It image is contained in the
ring of integers of k. The morphism ι depends on the choice of ζq.

By the results of Section 4, the ring morphism ι induces a representation

ρq : Î(q)
g → U(g − 1, g − 1)

whose image is contained in the subgroup U ♯(g − 1, g − 1) of all elements

with determinant a square of a q-th root of unity. Here as before, Î(q)
g is the

group of all lifts of elements in the Torelli group to the surface Sq, and this
group fits into the exact sequence

1 → G→ Î(q)
g → Ig → 1



22 EXPONENTIAL TORSION GROWTH FOR RANDOM 3-MANIFOLDS

In the statement of our main theorem, we use a random walk on the
Torelli group Ig. To apply the representations ρq and the criteria for Mahler
measure 0 above, we have to work with random walks on a finite number

of groups Î(q)
g . The rest of this section is devoted to explaining how to pass

from one to the other.
Let µ be a probability measure on Ig whose support is finite and generates

Ig as a semigroup. Define a measure ζ on Î(q)
g via

ζ(h) = |G|−1µ(hG).

Then ζ is a measure whose finite support generates Î(q)
g as a semigroup.

Lemma 6.4. Let π : Î(q)
g → Ig be the quotient map. Then ζ∗n(π−1A) =

µ∗n(A) for any A ⊂ Ig.

Proof. Let Z ⊂ Î(q)
g be a complete set of coset representatives for Ig (under

the quotient map π).
Then

ζ∗n(π−1A) =
∑

h1,...,hn∈Î(q)
g ,h1···hn∈π−1A

ζ(h1) · · · ζ(hn)

=
∑

a1,...,an∈Z,g1,...,gn∈G,a1···anG∈A
ζ(a1g1) · · · ζ(angn)

=
∑

a1,...,an∈Z,g1,...,gn∈G,g1,...,gnG∈A

µ(a1g1G)

|G| · · · µ(angnG)|G|

=
∑

a1,...,an∈Z,a1···anG∈A
µ(a1G) · · · µ(anG)

=
∑

l1,...,lk∈Ig,l1···ln∈A
µ(l1) · · · µ(ln)

= µ∗n(A).

�

6.3. The action on subspaces: Part II. Before we can complete the

proof, we need to collect some final facts on the representation ρq : Î(q)
g →

U(g− 1, g− 1) and its action on subspaces. Recall that we are interested in
the representation

σq : Î(q)
g → GL(∧g−1C2g−2).

Recall that a representation ρ of a groupG on a finite dimensional complex
vector space V is strongly irreducible if it is irreducible and if ρ(G) does not
preserve any finite union of proper subspaces.

The following proposition is standard.

Proposition 6.5. The representation of SU(g − 1, g − 1) on ∧g−1C2g−2

induced by the standard action on C2g−2 is strongly irreducible. The image
of SU(g − 1, g − 1) in GL(∧g−1C2g−2) is semi-simple and Zariski closed.
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Proof. It is a classical fact that for any k, the representation of SL(d,C) on
∧kCd is irreducible (compare e.g. [FH91, §15.2]). Now, SU(g − 1, g − 1) is
a simple non-compact real Lie group with Lie algebra sug−1,g−1. We have
that sug−1,g−1 ⊗ C = sl2g−2. This implies that restrictions of irreducible
representations of SL(2g− 2,C) to SU(g− 1, g− 1) are irreducible (compare
the discussion in [FH91, §26.1, p. 439]). Since SU(g− 1, g− 1) is connected,
this representation is in fact strongly irreducible.

Now the map SU(g−1, g−1) → GL(∧g−1C2g−2) is algebraic, and images
of algebraic groups under algebraic maps are Zariski closed. Furthermore,
as SU(g − 1, g − 1) is simple, the same holds true for the image group. �

Let Γ be any countable group. A representation σ : Γ → GL(V ) on a
complex vector space V is called proximal if there exists a sequence (gn) ⊂
σ(Γ) ⊂ GL(V ) and a sequence (λn) ⊂ C such that

π = lim
n
λngn

is an endomorphism of rank one.

Lemma 6.6. Let as before σq : Î(q)
g → GL(∧g−1C2g−2). Then the image of

the representation σq is strongly irreducible and proximal.

Proof. By Corollary 4.6 the image of ρq intersects SU(g − 1, g − 1) in a
Zariski dense subgroup. Thus, strong irreducibility of σq follows from Propo-
sition 6.5.

To show that σq is proximal, it suffices to find an element A in the image

of Î(q)
g whose action on ∧g−1C2g−2 is proximal. Now any matrix A ∈ SU(g−

1, g − 1) as a (2g − 2) × (2g − 2)-matrix with real eigenvalues λ1 > · · · >
λg−1 > 1 > λ−1

g−1 > · · · > λ−1
1 will do, and we can find such a matrix in

the image of Î(q)
g since this image is Zariski dense in SU(g − 1, g − 1) by

Corollary 4.6 again. �

6.4. Random walks on Î(q)
g .

In Proposition 6.3, for a choice of a positive number α > 0 we formulated
two events for a random walk on Ig and proved that at least one of these
events occurs if the logarithmic Mahler measure of the Alexander polynomial
of the hyperbolic three-manifold defined by an element of the walk vanishes.
Our end game will be to find a number α so that the probability of any
one of these two events occurring tends to zero with the step-length of the
random walk.

To find such a number α > 0 we use results of Benoist and Quint [BQ14,

BQ16]. Let us fix a finitely supported probability measure µ on Î(q)
g whose

support generates Î(q)
g as a semigroup. Later, this measure will be obtained

from a measure on the Torelli group Ig using the procedure described in
Section 6.2, but for this section this is not important. This set up gives rise

to a one-sided Bernoulli space B with alphabet Î(q)
g defined by:

B = (Î(q)
g )N,
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The σ-algebra on this space is generated by cylinder sets

C(ϕ1, . . . , ϕn) = {b ∈ B | bi = ϕi ∀ i = 1, . . . , n},

for ϕ1, . . . , ϕn ∈ Î(q)
g . We define a shift invariant probability measure β on

B by

β = µ⊗N∗.

Observe that by definition we have for a subset X ⊂ Î(q)
g

µ∗n(X) = β




⋃

ϕ1,...,ϕn∈Î(q)
g

ϕ1···ϕn∈X

C(ϕ1, . . . , ϕn)




The natural Hermitian inner product on C2g−2 for which the basis xi, yi
is orthogonal induces an inner product (·, ·) on V = ∧g−1C2g−2. We denote
by ‖ · ‖ the corresponding norm, and we let ‖A‖ be the operator norm of a
matrix A ∈ GL(V ) with respect to this norm.

We will use the following result by Benoist and Quint, which is a combi-
nation of Theorem 4.28(b) and Theorem 4.31 of [BQ16]. In its formulation,
we use as before the special point e = x1 ∧ · · · ∧ xg−1 ∈ ∧g−1C2g−2.

Theorem 6.7. (The law of large numbers) For a fixed finitely supported

probability measure µ on Î(q)
g and for fixed q ≥ 7 or for q = 5, there exists a

number λ = λ(µ, q) > 0 such that for β-almost every b ∈ B, one has

1

n
log ‖ρq(bn · · · b1) · e‖ → λ.

Furthermore, this convergence also holds in L1(B, β). That is, the functions
Ln : B → R defined by

Ln(b) =
1

n
log ‖ρq(bn · · · b1) · e‖,

converge in L1(B, β) to the constant function λ(µ, q) as n→ ∞.

Proof. The results of Benoist and Quint are valid for any random walk on
GL(V ) whose support generates (as a semigroup) a subgroup Γ of GL(V )
so that the standard representation of Γ on V is strongly irreducible and
proximal. That these properties hold true for the representations σq was
shown in Lemma 6.6. �

It’s important to stress here that λ(µ, q) depends only on µ and q, but
not on the sample path b ∈ B.

The following result about random walks on projective spaces is also due
to Benoist and Quint [BQ14]. In its formulation, convolution of measures
in P(Cd) is via the orbit map for the action of GL(Cd).
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Proposition 6.8. [BQ14, Theorem 1.1 (ii)] Let µ be a measure on GL(Cd)
such that the Zariski closure of the semi-group generated by the support of
µ is semi-simple. Let x ∈ P(Cd). Then the convolutions µ∗n ⋆ δx converge
to a µ-stationary measure ν on P(Cd).

The following result is due to Gol’dshĕıd and Margulis [GM89] (see also
[BQ16, Lemma 4.6]).

Proposition 6.9. Let µ be a probability measure on GL(Cd). Let Γµ denote

the smallest subsemigroup of GL(Cd) such that µ(Γµ) = 1. Let ν be a µ-

stationary probability measure on P(Cd). If Γµ acts strongly irreducibly on

Cd then ν(P(W )) = 0 for any proper linear subspace W of Cd.

6.5. Controlling Finite Covers. Recall that λ(µ, q) > 0 is the Lyapunov

exponent associated to a finitely supported probability measure µ on Î(q)
g

and a representation ρq : Î(q)
g → U(g − 1, g − 1) (see Theorem 6.7). Fur-

thermore, let ν = limn→∞ µ⋆n ⋆ δe whose existence is guaranteed by Propo-
sition 6.8.

Corollary 6.10. Let q ≥ 3¡ then for every α ∈ (0, λ(µ, q)) we have:

µ∗n
({
ϕ ∈ Î(q)

g | |(ρq(ϕ)e, f)| < exp(αn)
})

→ 0,

as n→ ∞.

Proof. The claim will follow from two statements, namely:

I: For every ε > 0 there exists a δ = δ(ε) > 0 and an n0 = n0(ε) ∈ N

such that:

µ∗n
({

ϕ ∈ Î(q)
g | |(ρq(ϕ)e, f)|‖ρq(ϕ)e‖

< δ

})
< ε/2,

for all n ≥ n0.
II: For every ε, δ > 0 there exists an n1 = n1(ε, δ) ∈ N so that for all
n ≥ n1 we have:

µ∗n
({
ϕ ∈ Î(q)

g | ‖ρq(ϕ)e‖ < exp(αn)/δ
})

< ε/2,

Assuming these for a moment, the claim is immediate: if |(ρq(ϕ)e, f)| <
exp(αn) then

|(ρq(ϕ)e, f)|
‖ρq(ϕ)e‖

< δ or ‖ρq(ϕ)e‖ < exp(αn)/δ.

As such, combining I and II proves the corollary.

To prove I, we note that the condition (·, f) = 0 defines a linear subspace
of ∧g−1C2g−2 of proper codimension. As such

ν

({
v ∈ P(∧g−1C2g−2) | |(v, f)|‖v‖ = 0

})
= 0
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by Proposition 6.9. By regularity of ν and continuity of the function

x 7→ |(x, f)|
‖x‖

on P(∧g−1C2g−2), there exists a number δ > 0 so that

ν

({
v ∈ P(∧g−1C2g−2) | |(v, f)|‖v‖ ≤ δ

})
< ε/4.

Therefore weak convergence of the measures µ∗n ∗ δe to ν implies

lim sup
n→∞

µ∗n ⋆ δe

({
v ∈ P(∧g−1C2g−2) | |(v, f)|‖v‖ ≤ δ

})
< ε/4.

The inequality we are after for n large enough now follows from the identity

µ∗n ⋆ δe

({
v ∈ P(∧g−1C2g−2) | |(v, f)|‖v‖ ≤ δ

})

= µ∗n
({

ϕ ∈ Î(q)
g | |(ρq(ϕ)e, f)|‖ρq(ϕ)e‖

≤ δ

})
.

We will prove Claim II using the law of large numbers (Theorem 6.7).
The L1(B, β) convergence of the functions Ln : B → R to the constant
function λ implies that as n→ ∞

∫

B
|Ln(b)− λ|dβ(b) → 0.

Let α′ > 0 so that α < α′ < λ. The convergence above tells us that for all
ε > 0 there exists an n1 ∈ N so that for all n ≥ n1:

β

({
b ∈ B | 1

n
log ‖ρq(bn · · · b1) · e‖ < α′

})
< ε/2.

Because the condition on the left is only a condition on the initial n entries
of the infinite path b ∈ B, using the relation between β and µ described at
the beginning of the section we have

β
({
b ∈ B | Ln(b) ≤ α′n

})
= µ∗n

({
ϕ ∈ Î(q)

g | log ‖ρq(ϕ) · e‖ ≤ α′n
})

.

By increasing n1, we can make sure that exp(α′n) > exp(αn)/δ. This shows
II. �

6.6. The proof of the main theorems. Putting all the above together,
we can now prove Theorem 6.1.

The proof of Theorem 6.1. Let us denote by B ⊂ Ig the set of those elements
of the Torelli group that do not have Eσ (the condition we defined in the
beginning of this section). For a number α > 0 (chosen below) let Kα,µ be
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the finite set given by Proposition 6.3. The same proposition shows that for
any q ∈ N we have

B ∩ supp(µ∗n) ⊂ A(n) ∪
⋃

k∈Kα,µ

Ck

where

A(n) = {ϕ ∈ Ig | |(ρq(ϕ̂)e, f)| < exp(αn) for some lift ϕ̂ of ϕ} ,
Ck = {ϕ ∈ Ig | det(B∞(ϕ)) contains Φk as a factor)}

Set q = 3 and assume that α < λ(µ, 3) (in addition to further constraints

below). Consider the projection π : Î(3)
g → Ig. By Lemma 6.4, we have

µ∗n(A(n)) = ζ∗n(π−1A(n))

where ζ is the lifted measure as in Section 6.2. Now,

ζ∗n(π−1A(n)) = ζ∗n
({
ϕ̂ ∈ Î(3)

g | |(ρ3(ϕ̂)e, f)| < exp(αn)
})

and hence as α < λ(µ, 3), it follows from Corollary 6.10 that

µ∗n(A(n)) = ζ∗n(π−1A(n)) → 0 (n→ ∞).

As Kα,µ is a finite set, for the proof of the theorem it now suffices to show
that for each fixed k ∈ Kα,µ we have µ∗n(Ck) → 0 as n→ ∞.

Thus let k ∈ Kα,µ and assume first that k ≥ 3. If det(B∞(ϕ)) contains
Φk as a factor, then Lemma 4.7 implies that (ρk(ϕ̂)e, f) = 0 for a lift ϕ̂ of
ϕ to Sk. Now the equation (·, f) = 0 defines a proper linear subspace of
∧g−1C2g−2, so arguing as in the proof of Corollary 6.10 we see that for a

finitely supported probability measure ζ on Î(k)
g whose support generates

Î(k)
g as a semigroup, we have that

ζ∗n
({
ϕ̃ ∈ Î(k)

g | (ρk(ϕ̂)e, f) = 0
})

→ 0

Using again Lemma 6.4, this implies that

µ∗n(Ck) → 0

for k ≥ 3.

We are thus left with controlling the case where det(B∞(ϕ)) contains at
least one of Φ1, Φ2 as a factor, but no other Φk with k ∈ Kα,µ. In other
words, we need to show that

µ∗n


(C1 ∪ C2) \

⋃

k∈Kα,µ,k≥3

Ck


→ 0.

To this end, we will decompose the set in question into two sets D1,D2 and
show that their measures converge to 0. Namely, let Di ⊂ Ig be subset of
the Torelli group where

det(B∞(ϕ)) = Φm1
1 · Φm2

2 ·Q
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for some polynomial Q ∈ Z[t] that does not contain Φk as a factor for any
k ∈ {1, 2}∪Kα,µ and m1,m2 ∈ N are such that mi ≥ mj ∀j 6= i and mi ≥ 1.
In other words, Di is the set where of the two “problematic” polynomials
Φ1 and Φ2, Φi appears with the largest exponent. Note that indeed

(C1 ∪ C2) \
⋃

k∈Kα,µ,k≥3

Ck = D1 ∪D2.

Note that there is a number B > 1 so that

|Φi(ξ)| ≤ B, ∀i = 1, 2 ∀ξ ∈ C, |ξ| = 1.

Since primitive roots of unity of prime order are dense in the unit circle, we
can choose distinct primes qi > 2 and qi–th roots of unity ζqi so that

|Φi(ζqi)| ≤ B−1 ∀i = 1, 2

and therefore
|Φi(ζqi)| ·max {1, |Φj(ζqi)|} ≤ 1,

for i 6= j ∈ {1, 2}. We will also assume from now on that the map ι :
Z[Z/qiZ] → C introduced in Section 4.2 maps the generator 1 ∈ Z/qiZ to
this chosen primitive qi–th root of unity ζqi .

We further impose that α > 0 satisfies

α < min{λ(µ, q1), λ(µ, q2)}
Note that by our choices, using Proposition 5.4, for all ϕ ∈ Di we have

that for a lift ϕ̂

|(ρqi(ϕ̂)e, f)| = |det(B∞(ϕ))(ζqi)| ≤ exp(αn).

Namely,

|det(B∞(ϕ))(ζqi)| =
|Φm1

1 (ζqi) · Φm2
2 (ζqi) ·Q(ζqi)| ≤ |Q(ζqi)|

and arguing as in the proof of Proposition 6.3 we have

|Q(ζqi)| ≤ exp(α′ deg(Q)) ≤ exp(α′ deg(det(B∞(ϕ))) < exp(αn),

where α′ is the number computed from α in that proof.
Hence, since qi > 2, we can argue as in the case of the A(n) to show that

µ∗n(Di) → 0

This finishes the proof of the theorem. �

We conclude with the proof of the second main theorem. Namely,

Theorem 6.11. Let µ be any measure on Ig (or a homology stabiliser) with
finite support so that the support generates Ig as a semigroup. Fix d > 0.
Then

µ∗n
({

ϕ ∈ Ig
∣∣∣∣

b1(N
′
ϕ) > b1(Nϕ) for some

Abelian cover N ′
ϕ of degree ≤ d

})
→ 0

as n→ ∞.
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As a first reduction, note that it suffices to consider cyclic covers. This is
due to the fact that every representation of an Abelian group factors through
a cyclic group. See the discussion in [DT06, Section 9.3] for details on this
reduction. As there are only finitely many such cyclic covers, it suffices to
show the conclusion for one.

Fix a cyclic cover Sq → S. Let N̂ϕ be the cover of Nϕ defined by Sq → S.

Proposition 6.12. The cover N̂ϕ has strictly larger Betti number than Nϕ

if and only if

ι(detBq(ϕ)) = 0

Proof. Recall that E = ker(H1(S
′;Z) → H1(S;Z)) and that H1(S

′;Z) =
Z[G]2g−2 ⊕ Z2. We define a map

J : H1(S
′;Z) → C2g−2

by setting it to be zero on the trivial summand Z2 and applying the map ι
(from Section 4.2) coordinate-wise on Z[G]2g−2. As the kernel of ι : Z[G] →
C is exactly the trivial representation contained in Z[G], the homomorphism
J induces an isomorphism of E onto its image J (E). Consequently, the
induced map JQ : H1(S

′;Q) → C induces an isomorphism from E ⊗Q onto
its image JQ(E ⊗Q)

By Proposition 2.6, we have that b1(N̂ϕ) > b1(Nϕ) if and only if

(L′
E + ϕ̂∗L

′
E)⊗Q ( E ⊗Q

is a proper subspace, or equivalently, if

ι(L′
E ⊗Q) + ι(ϕ̂∗L

′
E ⊗Q) ⊂ ι(E ⊗Q)

is a proper subspace. By definition of Bq, the latter is the case exactly if
ι(detBq(ϕ)) 6= 0. This shows the proposition. �

Arguing as in the proof of Theorem 1, the asymptotic probability that
the determinants detBq(ϕ) satisfy the (algebraic) condition from Proposi-
tion 6.12 will converge to 0, proving Theorem 2.

Remark 6.13. In order to extend [DT06, Theorem 9.1] to genus g ≥ 3 using
this method, one can argue as follows. As above, it suffices to consider cyclic
covers. For a fixed cyclic cover, the subgroup Γ of the mapping class group
which does lift to the cover and so that lifts commute with the deck group
action has finite index in the mapping class group. Standard equidistribution
results for random walks on finite graphs can be used to show that the desired
result is true for a random walk on the mapping class group if it is true for
a random walk on Γ. On Γ one can define the representation ρ as before,
and the argument given for Theorem 6.11 applies.

We end with a sketch of the following result, which addresses a question
in [Ko08, p. 139].
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Theorem 6.14. Let µ be a probability measure on Mod(Sg) whose finite
support generates Mod(Sg) as a semigroup. Then there is an α > 0 so that

µ∗n ({ϕ ∈ Mod(Sg)|#(H1(Nϕ;Z)tors) < exp(αn)) → 0

Sketch of proof. Consider the standard representation

ρ : Mod(Sg) → Sp(2g,Z)

on the homology of the surface. It is known that this is surjective. As in
Section 3, one can define a “bottom-left block” B(ϕ) of ρ(ϕ) so that

#(H1(Nϕ;Z)tors) = detB(ϕ)

supposing that the determinant detB(ϕ) is nonzero. Now, one can use the
representation ρ in place of the ρq to let the mapping class group act on
Lagrangian subspaces of R2g.

Given a basis v1, . . . , vg ∈ R2g of a Lagrangian subspace of R2g, we obtain
a vector v1 ∧ · · · ∧ vg ∈ ∧gR2g. The action of Sp(2g,Z) on the subspace
W ⊂ ∧gR2g spanned by all vectors obtained from Lagrangian subspaces of
R2g is known to be irreducible and proximal. As such the same results of
Gol’dshĕıd and Margulis [GM89] and Benoist and Quint [BQ14, BQ16] that
are used in Section 6.4 apply.

Thus one can show that, first, with probability converging to 1, detB(ϕ) 6=
0 (as the opposite is a proper subspace ofW ), and in fact it does grow expo-
nentially fast with the length n of the walk (by the law of large numbers). �
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